Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474039

RESUMO

Ascidian larvae undergo tail elongation and notochord lumenogenesis, making them an ideal model for investigating tissue morphogenesis in embryogenesis. The cellular and mechanical mechanisms of these processes have been studied; however, the underlying molecular regulatory mechanism remains to be elucidated. In this study, assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were applied to investigate potential regulators of the development of ascidian Ciona savignyi larvae. Our results revealed 351 and 138 differentially accessible region genes through comparisons of ATAC-seq data between stages 21 and 24 and between stages 24 and 25, respectively. A joint analysis of RNA-seq and ATAC-seq data revealed a correlation between chromatin accessibility and gene transcription. We further verified the tissue expression patterns of 12 different genes. Among them, Cs-matrix metalloproteinase 24 (MMP24) and Cs-krüppel-like factor 5 (KLF5) were highly expressed in notochord cells. Functional assay results demonstrated that both genes are necessary for notochord lumen formation and expansion. Finally, we performed motif enrichment analysis of the differentially accessible regions in different tailbud stages and summarized the potential roles of these motif-bearing transcription factors in larval development. Overall, our study found a correlation between gene expression and chromatin accessibility and provided a vital resource for understanding the mechanisms of the development of ascidian embryos.


Assuntos
Ciona , Urocordados , Animais , Cromatina , Urocordados/genética , Sequenciamento de Cromatina por Imunoprecipitação , Morfogênese , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430885

RESUMO

Osmoregulation is essential for organisms to adapt to the exterior environment and plays an important role in embryonic organogenesis. Tubular organ formation usually involves a hyperosmotic lumen environment. The mechanisms of how the cells respond and regulate lumen formation remain largely unknown. Here, we reported that the nuclear factor of activated T cells-5 (NFAT5), the only transcription factor in the NFAT family involved in the cellular responses to hypertonic stress, regulated notochord lumen formation in chordate Ciona. Ciona NFAT5 (Ci-NFAT5) was expressed in notochord, and its expression level increased during notochord lumen formation and expansion. Knockout and expression of the dominant negative of NFAT5 in Ciona embryos resulted in the failure of notochord lumen expansion. We further demonstrated that the Ci-NFAT5 transferred from the cytoplasm into nuclei in HeLa cells under the hyperosmotic medium, indicating Ci-NFAT5 can respond the hypertonicity. To reveal the underly mechanisms, we predicted potential downstream genes of Ci-NFAT5 and further validated Ci-NFAT5-interacted genes by the luciferase assay. The results showed that Ci-NFAT5 promoted SLC26A6 expression. Furthermore, expression of a transport inactivity mutant of SLC26A6 (L421P) in notochord led to the failure of lumen expansion, phenocopying that of Ci-NFAT5 knockout. These results suggest that Ci-NFAT5 regulates notochord lumen expansion via the SLC26A6 axis. Taken together, our results reveal that the chordate NFAT5 responds to hypertonic stress and regulates lumen osmotic pressure via an ion channel pathway on luminal organ formation.


Assuntos
Cordados , Ciona , Animais , Humanos , Notocorda/metabolismo , Células HeLa , Linfócitos T , Núcleo Celular
3.
Genes Genomics ; 41(6): 629-645, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30941725

RESUMO

BACKGROUND: The subpeduncle lobe/olfactory lobe-optic gland axis is called the endocrine regulation center of cephalopods. However, little is known about the mechanism of the subpeduncle lobe/olfactory lobe-optic gland axis regulate the sexual maturation and post-reproductive death of Sepia esculenta Hoyle. OBJECTIVES: The primary objective of this study was to provide basic information for revealing the mechanism of the subpeduncle lobe/olfactory lobe-optic axis regulating the rapid post-reproductive death of S. esculenta. METHODS: In this paper, Illumina sequencing based transcriptome analysis was performed on the brain tissue of female S. esculenta in the three key developmental stages: growth stage (BG), spawning stage (BS), and post-reproductive death stage (BA). RESULTS: A total of 66.19 Gb Illumina sequencing data were obtained. A comparative analysis of the three stages showed 2609, 3333, and 170 differentially expressed genes (DEGs) in BG-vs-BA, BG-vs-BA, and BS-vs-BA, respectively. The Gene Ontology (GO) enrichment analysis of DEGs revealed that the regulation of cyclin-dependent protein serine/threonine kinase activity, oxidative phosphorylation, and respiratory chain were significantly enriched. The significant enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway identified pathways associated with the regulation of death, such as the mammalian target of rapamycin (mTOR) signaling pathway, AMPK signaling pathway, oxidative phosphorylation, and cell cycle. CONCLUSION: The post-reproductive death of S. esculenta was found to be a complex energy steady-state regulation network system. The mTOR acted as an energy receptor and had a key role in regulating energy homeostasis.


Assuntos
Encéfalo/metabolismo , Estágios do Ciclo de Vida , Reprodução , Sepia/genética , Transcriptoma , Animais , Encéfalo/crescimento & desenvolvimento , Feminino , Redes Reguladoras de Genes , Sepia/crescimento & desenvolvimento , Sepia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...